

Synthesis and Evaluation of Amino Acid Esters of 6-Deoxypenciclovir as Potential Prodrugs of Penciclovir

Dae-Kee Kim,* Namkyu Lee, Young-Woo Kim, Kieyoung Chang, Guang-Jin Im, Won-Son Choi and Key H. Kim

Life Science Research Center, SK Chemicals, 600 Jungja-Dong, Changan-Ku, Suwon-Si, Kyungki-Do 440-745, Korea

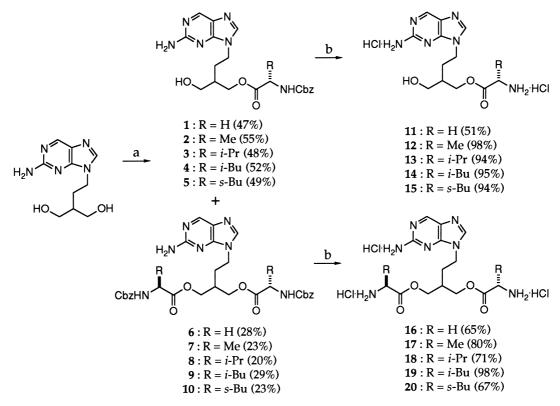
Received 7 September 1998; accepted 29 October 1998

Abstract—The amino acid ester derivatives of 6-deoxypenciclovir, 11–20, were synthesized as potential prodrugs of penciclovir, and were evaluated for their oral penciclovir bioavailability in mice and rats. Esterification of 6-deoxypenciclovir with *N*-carbobenzyloxyglycine, -L-alanine, -L-valine, -L-leucine, or -L-isoleucine (3.75 equiv.) using conventional coupling method (DCC/DMAP) afforded the mono-*O*-ester derivatives 1–5 in 47–55% yields as a mixture of two diastereomers along with the di-*O*-ester derivatives 6–10 in 20–29% yields. Reductive cleavage of carbobenzyloxy (Cbz) group (10% Pd/C, 1 atmosphere of H₂, room temperature in methanol) followed by subsequent treatment of the resulting free amine with methanolic HCl solution provided the mono-*O*-ester derivatives 11–15 as di-HCl salt in 51–98% yields and the di-*O*-ester derivatives 16–20 as tri-HCl salt in 65–98% yields. Of the prodrugs tested in mice and rats, 6-deoxypenciclovir *O*-L-valinate (13), *O*-L-isoleucinate (15), and *O*,*O*-di-glycinate (16) showed significantly higher urinary recovery of penciclovir compared with that of penciclovir, but those are somewhat lower than that of famciclovir. © 1999 Elsevier Science Ltd. All rights reserved.

Introduction

An acyclonucleoside 9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine (penciclovir) is a potent and highly selective inhibitor of members of the herpesvirus family including herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV), and Epstein-Barr virus (EBV) in cell cultures and in animal models.^{1,2} The antiviral spectrum of penciclovir against human herpesviruses is similar to that of 9-(2-hydroxyethoxymethyl)guanine (acyclovir), and both compounds have highly selective activity against these viruses because they are phosphorylated only in herpesvirus infected cells.³ The advantage of penciclovir over acyclovir is that its antiviral activity in cell culture is more persistent than that of acyclovir since penciclovir triphosphate has a much greater stability than acyclovir triphosphate within virus-infected cells.^{2,4} However, like other acycloguanosine analogues such as acyclovir,5 ganciclovir,6 and buciclovir,7 penciclovir was poorly absorbed when given orally to rodents.^{8,9} In order to overcome this inadequate oral bioavailability, 2-amino-9-(4-acetoxy-3-acetoxymethylbut-1-yl)purine (famciclovir), the diacetyl 6-deoxy analogue of penciclovir, has been developed as a prodrug of penciclovir. 8 Famciclovir is orally well absorbed, and then extensively converted to penciclovir by the enzymatic removal of two *O*-acetyl groups followed by oxidation at the 6-position of the purine ring by xanthine oxidase in mice,⁸ rats,⁹ and humans.¹⁰ Famciclovir has recently been approved by FDA for the treatment of herpes zoster (shingles).

Recently, Beauchamp et al. prepared a series of amino acid ester derivatives of acyclovir to increase its oral bioavailability.11 Among them, the L-valyl ester of acyclovir (valaciclovir), recently approved by FDA, is rapidly absorbed and extensively converted to acyclovir after oral administration; the resulting plasma levels of acyclovir in rats and humans are 3 to 5 times higher than those attainable with oral acyclovir itself. 11,12 We also prepared the amino acid esters of penciclovir and a series of 2-amino-9-(3-hydroxymethyl-4-alkoxycarbonyloxybut-1-yl)purines as potential prodrugs of penciclovir, and found that the oral penciclovir bioavailabilities of *O*-acetyl-*O*-L-valylpenciclovir (SK 1826) and 2-amino-9-(3-hydroxymethyl-4-isopropoxycarbonyloxybut-1-yl)purine (SK 1875) in mice and/or rats were comparable to that of famciclovir. 13,14 On the basis of these findings, it was of our particular interest to determine whether amino acid ester derivatives of 6-deoxypenciclovir could increase its oral penciclovir bioavailability. Therefore, in this report, we prepared the amino acid esters of 6-deoxypenciclovir, 11–20, and evaluated for their oral penciclovir bioavailability in mice and rats.


Key words: Antivirals; nucleosides; chemotherapy; enzyme inhibitors. *Corresponding author. Tel.: +82-331-258-1709; fax: +82-331-45-1192; e-mail: dkkim@skchemicals.com

Chemistry

Target compounds, the *O*-amino acid esters of 6-deoxy-penciclovir, **11–20**, were synthesized as shown in Scheme 1. Starting 6-deoxypenciclovir was prepared according to the known procedure¹ and was esterified

with *N*-carbobenzyloxyglycine, -L-alanine, -L-valine, -L-leucine or -L-isoleucine (3.75 equiv.) using conventional coupling method (DCC/DMAP) under a dilute condition (0.04 M in DMF) to obtain a mixture of mono- and di-*N*-carbobenzyloxy-amino acid derivatives, **1–10**. Chromatographic purification of the crude mixtures on

Chart 1.

Scheme 1. (a) (i) N-Cbz-glycine, -L-alanine, -L-valine, -L-leucine or -L-isoleucine (1.25 equiv.), DCC (1.5 equiv.), DMAP (0.15 equiv.), DMF, rt, 16 h; (ii) repeat process (i) twice; (b) (i) H₂ (1 atm), 10% Pd/C (20 wt% for 11–15 or 40 wt% for 16–20), MeOH, rt, 3 h, (ii) SiO₂ flash chromatography, (ii) 2N HCl in MeOH (3.0 equiv. for 11–15 or 5.0 equiv. for 16–20), MeOH.

silica gel afforded the mono-O-ester derivatives 1-5 in 47–55% yields as a mixture of two diastereomers along with the di-O-ester derivatives 6-10 in 20-29% yields. Reductive cleavage of carbobenzyloxy (Cbz) group and formation of HCl salts from 11-20 were performed in a stepwise manner because an impurity problem was observed with one-pot procedure in our previous work of O-acyl-O-amino acid ester prodrugs of penciclovir. 13 Hydrogenolysis of Cbz group (10% Pd/C, 1 atmosphere of H₂, room temperature in methanol) in the absence of aqueous HCl solution, and purification by flash chromatography on silica gel followed by subsequent treatment of the resulting free amine with 2.0 N methanolic HCl solution (3.0 equiv. for 11-15 or 5.0 equiv. for 16-20) provided the mono-O-ester derivatives 11-15 as di-HCl salt in 51–98% yields and the di-O-ester derivatives **16–20** as tri-HCl salt in 65–98% yields.

As pointed out in our earlier work of O-acyl-O-amino acid ester prodrugs of penciclovir,13 it was again apparent from their ¹H and ¹³C NMR spectra that the mono-O-ester compounds 12–15 consisted of two diastereomers in equal amount. Two asymmetric carbon centers and two carbons bridging them were showed up as pairs in their ¹³C NMR spectra. For example, the ¹³C NMR spectrum of 13 in DMSO- d_6 showed pairs of two asymmetric carbons at 37.3, 37.4, 57.4, and 57.5 ppm, a pair of methylene carbon at 65.3 and 65.4 ppm, and a pair of carbonyl carbon at 168.55 and 168.64 ppm, respectively. As previously shown in the amino acid ester prodrugs of acyclovir, 11 the stereochemistry of the prodrugs might affect hydrolytic cleavage and absorption. Thus, it seems necessary to separate aforementioned diastereomers before biological evaluation. However, since the separation of those isomers was practically difficult even by using HPLC, they were tested as a mixture of diastereomers without further separation.

Results and Discussion

The bioavailability of penciclovir after a single oral administration (0.2 mmol/kg) of the amino acid derivatives 11-20 to mice and rats was estimated by determining the total amount of penciclovir recovered in the urine over a 48 h period and was compared with those of penciclovir and famciclovir (Table 1). Among the five mono-amino acid ester derivatives 11-15, the L-valine ester derivative 13 (32% in mice and 30% in rats) and the L-isoleucine ester derivative 15 (36% in mice and 29% in rats) showed high urinary recovery of penciclovir that was comparatively lower than that of famciclovir (39% in mice and 38% in rats), but significantly higher than that of penciclovir (9% in mice and 3% in rats). This result is consistent with an early observation of Beauchamp et al. that the esters of L-valine and L-isoleucine of acyclovir were much more bioavailable than the other amino acid ester derivatives. 11 In the diamino acid ester derivatives 16-20, the glycine ester derivative 16 achieved high urinary recovery of penciclovir in both mice (31%) and rats (30%), but the L-valine ester derivative 18 showed good urinary recovery of penciclovir in mice only (34%). In conclusion,

Table 1 Oral bioavailability of 6-deoxypenciclovir amino acid ester prodrugs of penciclovir, 11–20, in mice and rats

Compd		Urinary recovery of penciclovir ^a (% dose) ^b	
	R	Mouse	Rat
11	Н	18	16
12	Me	14	11
13	<i>i</i> -Pr	32	30
14	i-Bu	14	10
15	s-Bu	36	29
16	Н	31	30
17	Me	10	9
18	<i>i</i> -Pr	34	14
19	i-Bu	16	10
20	s-Bu	25	15
Penciclovir		9	3
Famciclovir		39	38

 $^{^{\}rm a}$ A single oral dose of test compound (0.2 mmol/kg) was administered to six male ICR mice or four male Sprague–Dawley rats. The total amount of penciclovir recovered in the urine over a 48 h period was determined by HPLC using a C_{18} reversed-phase column.

b Mean values.

6-deoxypenciclovir *O*-L-valinate (13), *O*-L-isoleucinate (15), and *O*,*O*-di-glycinate (16) showed significantly higher oral penciclovir bioavailability compared with that of penciclovir in mice and rats, but their oral bioavailability is somewhat lower than that of famciclovir.

Experimental

Infrared spectra were recorded on a Perkin–Elmer 1600 FTIR spectrophotometer and UV spectra on a Hewlett-Packard 8452A spectrometer. ¹H NMR spectra were recorded on a Varian Unity 300 spectrometer. The chemical shifts are reported in parts per million (ppm) relative to internal tetramethylsilane in DMSO- d_6 . ¹H noise-decoupled ¹³C NMR spectra were recorded on a Varian Unity 300 spectrometer at 75.4 MHz. DMSO-d₆ was used as solvent, and it served as the internal standard at δ 39.5. Fast-atom bombardment mass spectra (FAB-MS) were obtained on a VG Quattro mass spectrometer. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60F-254 glass plates. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer.

Synthesis of N-Cbz amino acid ester derivatives (1-10): general procedure. A mixture of 6-deoxypenciclovir (1.50 g, 6.32 mmol), DCC (1.96 g, 9.48 mmol), a catalytic amount of DMAP (116 mg, 0.95 mmol) and an appropriate N-Cbz protected amino acid (N-carbobenzyloxyglycine, -L-alanine, -L-valine, -L-leucine or -L-isoleucine) (1.25 equiv.) in anhydrous DMF (150 mL) was stirred at

room temperature under nitrogen atmosphere for 16 h. The reaction was replenished with the same amounts of amino acid, DCC and DMAP twice, and was stirred for an additional 11 h after each replenishment. The reaction mixture was filtered, and the filtrate was evaporated to dryness in vacuo. The resulting residue was purified by column chromatography on silica gel (gradient elution: 2% MeOH in CHCl₃, 5% MeOH in CHCl₃, and 10% MeOH in CHCl₃) to afford the corresponding mono-*O*-ester (1–5) and di-*O*-ester (6–10) compounds as a white foamy solid.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl *N*-carbobenzyloxyglycinate (1). Yield 47%; UV (MeOH) λ_{max} 224 (ε 22489), 246 (4301), and 310 (6015) nm; IR (KBr) 3330, 3217, 1718, 1614 cm⁻¹; ¹H NMR δ 1.64–1.98 (m, 3H, CH₂CH), 3.35–3.43 (m, 2H, CH₂OH), 3.78 (d, J=6.0 Hz, 2H, αCH₂), 4.02–4.17 (m, 4H, OCH₂ and NCH₂), 4.66 (t, J=5.1 Hz, 1H, OH), 5.03 (s, 2H, PhCH₂O), 6.48 (br s, 2H, NH₂), 7.25–7.40 (m, 5H, ArH), 7.70 (t, J=6.0 Hz, 1H, NH), 8.07 (s, 1H, H-8), 8.56 (s, 1H, H-6); FAB-MS m/z 429 (MH⁺). Anal. calcd for C₂₀H₂₄N₆O₅: C, 56.07; H, 5.65; N, 19.62. Found: C, 56.17; H, 5.74; N, 19.75.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl *N*-carbobenzyloxy-L-alaninate (2). Yield 55%; UV (MeOH) λ_{max} 224 (ε 19348), 246 (3474), and 310 (5185) nm; IR (KBr) 3331, 3215, 1716, 1614 cm⁻¹; ¹H NMR δ 1.25 (d, J=7.2 Hz, 1.5H, CH₃), 1.27 (d, J=7.2 Hz, 1.5H, CH₃), 1.67–1.98 (m, 3H, CH₂CH), 3.37–3.42 (m, 2H, CH₂OH), 3.99–4.19 (m, 5H, OCH₂, NCH₂ and αCH), 4.66 (t, J=5.4 Hz, 1H, OH), 4.98 (ABq, J=14.4 Hz, 1H, PhCH₂O), 5.02 (ABq, J=14.4 Hz, 1H, PhCH₂O), 6.48 (br s, 2H, NH₂), 7.25–7.40 (m, 5H, ArH), 7.75 (t, J=7.5 Hz, 1H, NH), 8.07 (s, 1H, H-8), 8.56 (s, 1H, H-6); FAB-MS m/z 443 (MH⁺). Anal. calcd for C₂₁H₂₆N₆O₅: C, 57.01; H, 5.92; N, 18.99. Found: C, 56.92; H, 6.05; N, 18.86.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl *N*-carbobenzyloxy-L-valinate (3). Yield 48%; UV (MeOH) $\lambda_{\rm max}$ 224 (ε 22895), 246 (4057), and 310 (6192) nm; IR (KBr) 3333, 3214, 1716, 1612 cm⁻¹; ¹H NMR δ 0.84–0.88 (m, 6H, CH(CH₃)₂), 1.70–1.90 (m, 3H, CH₂CH), 1.92–2.10 (m, 1H, C*H*(CH₃)₂), 3.42 (br s, 2H, C*H*₂OH), 3.94 (dd, J=7.5 Hz, J=6.9 Hz, 1H, αCH), 4.04–4.15 (m, 4H, OCH₂ and NCH₂), 4.65 (t, J=5.1 Hz, 1H, OH), 5.02 (s, 2H, PhCH₂O), 6.47 (br s, 2H, NH₂), 7.20–7.34 (m, 5H, ArH), 7.66 (t, J=6.9 Hz, 1H, NH), 8.06 (s, 1H, H-8), 8.57 (s, 1H, H-6); FAB-MS m/z 471 (MH⁺). Anal. calcd for C₂₃H₃₀N₆O₅: C, 58.71; H, 6.43; N, 17.86. Found: C, 58.65; H, 6.49; N, 17.54.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl *N*-carbobenzyloxy-L-leucinate (4). Yield 52%; UV (MeOH) λ_{max} 224 (ε 24004), 246 (4349), and 310 (6486) nm; IR (KBr) 3333, 3214, 1718, 1614 cm⁻¹; ¹H NMR δ 0.83 (d, J= 6.6 Hz, 3H, CH(CH₃)₂), 0.86 (d, J= 6.9 Hz, 3H, CH(CH₃)₂), 1.37–1.97 (m, 6H, CH₂CH and CH₂CH (CH₃)₂), 3.40 (br s, 2H, CH₂OH), 4.00–4.22 (m, 5H, OCH₂, NCH₂ and αCH), 4.65 (br s, 1H, OH), 5.01 (s, 2H, PhCH₂O), 6.63 (br s, 2H, NH₂), 7.25–7.40 (m, 5H,

ArH), 7.72 (t, J=7.5 Hz, 1H, NH), 8.12 (s, 1H, H-8), 8.60 (s, 1H, H-6); FAB-MS m/z 485 (MH $^+$). Anal. calcd for C₂₄H₃₂N₆O₅: C, 59.49; H, 6.66; N, 17.34. Found: C, 59.54; H, 6.78; N, 17.48.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl *N*-carbobenzyloxy-L-isoleucinate (5). Yield 49%; UV (MeOH) λ_{max} 224 (ε 24343), 246 (4308), and 310 (6636) nm; IR (KBr) 3336, 3214, 1717, 1614 cm⁻¹; ¹H NMR δ 0.76–0.84 (m, 6H, 2 CH₃), 1.15–1.23 (m, 2H, CHC $_{2}$ CH₃), 1.65–1.93 (m, 4H, CH $_{2}$ CH and CH), 3.42 (br s, 2H, CH $_{2}$ OH), 3.99 (dd, J=7.5 Hz, J=7.2 Hz, 1H, αCH), 4.06–4.15 (m, 4H, OCH $_{2}$ and NCH $_{2}$), 4.65 (t, J=5.1 Hz, 1H, OH), 5.02 (s, 2H, PhC $_{2}$ O), 6.47 (br s, 2H, NH $_{2}$), 7.29–7.34 (m, 5H, ArH), 7.67 (t, J=8.1 Hz, 1H, NH), 8.06 (s, 1H, H-8), 8.57 (s, 1H, H-6); FAB-MS m/z 485 (MH $_{2}$). Anal. calcd for C $_{24}$ H $_{32}$ N $_{6}$ O $_{5}$: C, 59.49; H, 6.66; N, 17.34. Found: C, 59.32; H, 6.81; N, 17.39.

[4-(2-Aminopurin-9-yl)-2-(*N***-carbobenzyloxyglycyloxy)-methyl|butyl** *N***-carbobenzyloxyglycinate (6).** Yield 28%; UV (MeOH) λ_{max} 218 (ε 23528), 246 (4272), and 310 (6256) nm; IR (KBr) 3355, 3216, 1724, 1614 cm⁻¹; ¹H NMR δ 1.78–2.02 (m, 3H, CH₂CH), 3.75–3.82 (m, 4H, 2 αCH₂), 4.05–4.15 (m, 6H, 2 OCH₂ and NCH₂), 5.03 (s, 2H, PhC*H*₂O), 6.48 (br s, 2H, NH₂), 7.27–7.39 (m, 10H, ArH), 7.71 (t, J = 6.3 Hz, 1H, NH), 8.08 (s, 1H, H-8), 8.57 (s, 1H, H-6); FAB-MS m/z 620 (MH⁺). Anal. calcd for C₃₀H₃₃N₇O₈: C, 58.15; H, 5.37; N, 15.82. Found: C, 58.24; H, 5.55; N, 15.66.

[4-(2-Aminopurin-9-yl)-2-(*N*-carbobenzyloxy-L-alanyloxy)methyl]butyl *N*-carbobenzyloxy-L-alaninate (7). Yield 23%; UV (MeOH) λ_{max} 212 (ε 21288), 246 (3623), and 310 (5334) nm; IR (KBr) 3328, 3222, 1718, 1625, 1613 cm⁻¹; ¹H NMR δ 1.25 (d, *J*=5.4 Hz, 3H, CH₃), 1.27 (d, *J*=7.2 Hz, 3H, CH₃), 1.60–1.98 (m, 3H, CH₂CH), 4.00–4.20 (m, 8H, 2 OCH₂, NCH₂ and 2 αCH), 4.98 (ABq, *J*=15.0 Hz, 2H, PhC*H*₂O), 5.02 (ABq, *J*=15.0 Hz, 2H, PhC*H*₂O), 6.47 (br s, 2H, NH₂), 7.20–7.38 (m, 10H, ArH), 7.78 (d, *J*=6.0 Hz, 2H, 2 NH), 8.07 (s, 1H, H-8), 8.57 (s, 1H, H-6); FAB-MS m/z 648 (MH⁺). Anal. calcd for C₃₂H₃₇N₇O₈: C, 59.34; H, 5.76; N, 15.14. Found: C, 59.55; H, 5.87; N, 14.99.

[4-(2-Aminopurin-9-yl)-2-(*N*-carbobenzyloxy-L-valyloxy)-methyl]butyl *N*-carbobenzyloxy-L-valinate (8). Yield 20%; UV (MeOH) λ_{max} 218 (ε 22813), 246 (4052), and 310 (5893) nm; IR (KBr) 3356, 3214, 1719, 1613 cm⁻¹; ¹H NMR δ 0.80–0.87 (m, 12H, 2 CH(C H_3)₂), 1.90–2.10 (m, 5H, CH₂CH and 2 CH(CH₃)₂), 3.95 (dd, J = 7.5 Hz, J = 6.9 Hz, 2H, 2 αCH), 4.12 (br s, 6H, 2 OCH₂ and NCH₂), 5.02 (s, 4H, 2 PhC H_2 O), 6.46 (br s, 2H, NH₂), 7.15–7.34 (m, 10H, ArH), 7.69 (t, J = 7.8 Hz, 2H, 2 NH), 8.06 (s, 1H, H-8), 8.57 (s, 1H, H-6); FAB-MS m/z 704 (MH⁺). Anal. calcd for C₃₆H₄₅N₇O₈: C, 61.44; H, 6.44; N, 13.93. Found: C, 61.32; H, 6.41; N, 13.88.

[4-(2-Aminopurin-9-yl)-2-(N-carbobenzyloxy-L-leucyloxy)methyl|butyl N-carbobenzyloxy-L-leucinate (9). Yield 29%; UV (MeOH) λ_{max} 218 (ϵ 23796), 246 (4183), and

310 (6209) nm; IR (KBr) 3337, 3220, 1720, 1613 cm⁻¹;
¹H NMR δ 0.83 (d, J= 8.4 Hz, 6H, CH(CH₃)₂), 0.85 (d, J= 8.1 Hz, 6H, CH(CH₃)₂), 1.38–1.70 (m, 6H, 2 CH₂CH(CH₃)₂), 1.85–2.10 (m, 3H, CH₂CH), 3.50 (br s, 2H, 2 α CH), 3.95–4.15 (m, 6H, 2 OCH₂ and NCH₂), 5.01 (s, 4H, 2 PhCH₂O), 6.75 (br s, 2H, NH₂), 7.25–7.40 (m, 10H, ArH), 7.75 (d, J= 7.8 Hz, 2H, 2 NH), 8.17 (s, 1H, H-8), 8.65 (s, 1H, H-6); FAB-MS m/z 732 (MH $^+$). Anal. calcd for C₃₈H₄₉N₇O₈: C, 62.37; H, 6.75; N, 13.40. Found: C, 62.26; H, 6.79; N, 13.55.

[4-(2-Aminopurin-9-yl)-2-(*N*-carbobenzyloxy-L-isoleucyloxy)methyl|butyl *N*-carbobenzyloxy-L-leucinate (10). Yield 23%; UV (MeOH) λ_{max} 218 (ε 24838), 246 (4333), and 310 (6522) nm; IR (KBr) 3358, 3214, 1718, 1612 cm⁻¹; ¹H NMR δ 0.76–0.83 (m, 12H, 4 CH₃), 1.10–1.45 (m, 4H, 2 CHC H_2 CH₃), 1.70–2.05 (m, 5H, CH₂CH and 2 CH), 4.01 (dd, J=7.2 Hz, J=6.9 Hz, 2H, 2 αCH), 4.12 (m, 6H, 2 OCH₂ and NCH₂), 5.01 (s, 4H, 2 PhC H_2 O), 6.46 (br s, 2H, NH₂), 7.25–7.40 (m, 10H, ArH), 7.70 (t, J=7.8 Hz, 2H, 2 NH), 8.06 (s, 1H, H-8), 8.57 (s, 1H, H-6); FAB-MS m/z 732 (MH⁺). Anal. calcd for C₃₈H₄₉N₇O₈: C, 62.37; H, 6.75; N, 13.40. Found: C, 62.48; H, 6.89; N, 13.49.

Synthesis of 11–20: general procedure. A mixture of N-Cbz amino ester compound and 10% Pd/C (20 wt% for mono-O-esters 1-5 and 40 wt% for di-O-ester 6-10) in methanol was purged with H₂ three times, and was vigrously stirred under H₂ atmosphere (1 atm; a balloon) at room temperature for 3 h. The reaction mixture was filtered through a Celite pad, and the filtrate was concentrated under reduced pressure to give an oily residue. The crude material was purified by column chromatography on silica gel (20% MeOH in CHCl₃) to afford the corresponding free amine compound as a colorless oil. Each purified free amine compound dissolved in anhydrous MeOH (20 mL) was treated with 2.0 N methanolic HCl solution (3.0 equiv. for mono-O-ester 11–15 and 5.0 equiv. for di-*O*-ester 16–20), evaporated to dryness in vacuo, and the resulting HCl salt was triturated from dry acetone to obtain the target products 11–20 as an off-white solid or an yellowish solid.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl glycinate di-hydrochloride (11). Yield 51%; UV (H₂O) λ_{max} 222 (ε 16974), 248 (3215), and 272 (3345) nm; IR (KBr) 3280, 3103, 1746, 1666, 1573 cm⁻¹; ¹H NMR δ 1.85 (br s, 3H, CH₂CH), 3.45 (br s, 2H, CH₂OH), 3.83 (br s, 2H, αCH₂), 4.10–4.35 (m, 4H, OCH₂ and NCH₂), 8.02 (br s, 3H, 2-NH₃+), 8.56 (br s, 3H, αNH₃+), 8.72 (s, 1H, H-8), 9.01 (s, 1H, H-6); FAB-MS m/z 295 (MH+). Anal. calcd for C₁₂H₁₈N₆O₃·2 HCl·1.7 CH₃OH: C, 39.02; H, 6.41; N, 19.93. Found: C, 38.73; H, 6.49; N, 19.81.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl L-alaninate di-hydrochloride (12). Yield 98%; UV (H₂O) λ_{max} 226 (ε 13196) and 266 (4662) nm; IR (KBr) 3292, 3066, 1745, 1702, 1667, 1585 cm⁻¹; ¹H NMR δ 1.44 (d, J=7.2 Hz, 3H, CH₃), 1.86 (br s, 3H, CH₂CH), 3.46 (br s, 2H, CH₂OH), 4.00–4.35 (m, 5H, OCH₂, NCH₂ and αCH), 8.00 (br s, 3H, 2-NH₃⁺), 8.68 (br s, 3H, αNH₃⁺), 9.00 (s, 1H, H-8), 9.17 (s, 1H, H-6); FAB-MS

m/z 309 (MH⁺). Anal. calcd for $C_{13}H_{20}N_6O_3\cdot 2$ HCl·CH₃OH·CH₃COCH₃: C, 43.32; H, 6.84; N, 17.83. Found: C, 43.47; H, 6.98; N, 17.95.

[4-(2-Aminopurin-9-vl)-2-hydroxymethyl]butyl L-valinate di-hydrochloride (13). Yield 94%; UV (H₂O) λ_{max} 222 (ε 22893), 244 (3891), and 306 (5787) nm; IR (KBr) 3302, 3029, 1742, 1648, 1523, 1424 cm⁻¹; ¹H NMR δ 0.92 (d, J = 6.9 Hz, 1.5H, CH(C H_3)₂), 0.93 (d, J = 7.2 Hz, 1.5H, $CH(CH_3)_2$), 0.96 (d, J = 7.2 Hz, 1.5H, $CH(CH_3)_2$), 0.97 (d, J = 6.9 Hz, 1.5H, $CH(CH_3)_2$), 1.75–1.95 (m, 3H, CH_2CH), 2.15–2.25 (m, 1H, $CH(CH_3)_2$), 3.45 (d, J = 4.5 Hz, 2H, C H_2 OH), 3.79 (br s, 1H, α CH), 4.11–4.23 (m, 4H, COOCH₂ and NCH₂), 8.25 (br s, 3H, 2-NH₃⁺), 8.76 (br s, 3H, αNH_3^+), 8.78 (s, 1H, H-8), 9.03 (s, 1H, H-6); 13 C NMR δ 17.6 (CH(CH₃)₂), 18.5 (CH(CH₃)₂), 27.5 (NCH₂CH₂), 29.3 (CH(CH₃)₂), 37.3 and 37.4 (CH), $41.3 \text{ (NCH}_2)$, 57.4 and 57.5 (α C), 60.1 and 60.2 (CH₂OH), 65.3 and 65.4 (CH₂OCOCH), 125.9 (C-5), 138.0 (C-8), 149.9 (C-6), 154.12 (C-4), 156.92 and 156.93 (C-2), 168.55 and 168.64 (CO); FAB-MS m/z 337 (MH⁺). Anal. calcd for C₁₅H₂₄N₆O₃·2 HCl·H₂O: C, 42.16; H, 6.60; N, 19.67. Found: C, 42.28; H, 6.87; N, 19.45.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl L-leucinate di-hydrochloride (14). Yield 95%; UV (H₂O) λ_{max} 228 (ε 12811) and 266 (4644) nm; IR (KBr) 3339, 3113, 1742, 1706, 1673, 1584 cm⁻¹; ¹H NMR δ 0.89 (d, J= 5.4 Hz, 6H, CH(CH3)₂), 1.65–1.86 (m, 7H, CH₂CH, CH2CH(CH₃)₂, and CH(CH₃)₂), 3.46 (br s, 2H, CH2OH), 3.93 (br s, 1H, αCH), 4.10–4.18 (m, 4H, COOCH₂ and NCH₂), 7.99 (br s, 3H, 2-NH₃⁺), 8.72 (br s, 3H, αNH₃⁺), 8.96 (s, 1H, H-8), 9.18 (s, 1H, H-6); FAB-MS m/z 351 (MH⁺). Anal. calcd for C₁₆H₂₆ N₆O₃·2 HCl·1.2 CH₃OH: C, 44.74; H, 7.16; N, 18.20. Found: C, 44.86; H, 7.24; N, 18.27.

[4-(2-Aminopurin-9-yl)-2-hydroxymethyl]butyl L-isoleucinate di-hydrochloride (15). Yield 94%; UV (H_2O) λ_{max} 222 (ε 22795), 244 (4047), and 306 (5914) nm; IR (KBr) 3307, 3029, 1744, 1651, 1523, 1424 cm⁻¹; ¹H NMR δ 0.83-0.90 (m, 6H, 2 CH₃), 1.20-1.47 (m, 2H, CHCH₂CH₃), 1.72–2.02 (m, 4H, CH₂CH and CHCH₃), 3.45 (dd, $J = 5.0 \,\text{Hz}$, 2.3 Hz, 2H, CH_2OH), 3.85 (br s, 1H, α CH), 4.14–4.23 (m, 4H, COOCH₂ and NCH₂), 8.25 (br s, 3H, 2-NH₃⁺), 8.76 (br s, 3H, α NH₃⁺), 8.78 (s, 1H, H-8), 9.03 (s, 1H, H-6); 13 C NMR δ 11.4 (CH₂ CH₃), 14.3 (CHCH₃), 25.4 (CH₂CH₃), 27.5 (NCH₂) CH₂), 35.8 (CH₂CHCH₃), 37.3 and 37.4 (CH), 41.2 (NCH_2) , 56.06 and 56.10 (α C), 60.1 and 60.2 (CH_2OH) , 65.3 and 65.4 (CH₂OCOCH), 125.9 (C-5), 138.1 (C-8), 149.8 and 149.9 (C-6), 154.1 (C-4), 156.9 (C-2), 168.4 and 168.5 (CO); FAB-MS m/z 351 (MH⁺). Anal. calcd for C₁₆H₂₆N₆O₃·2 HCl·0.5H₂O·CH₃OH: C, 43.97; H, 7.16; N, 18.10. Found: C, 44.09; H, 7.27 N, 18.24.

[4-(2-Aminopurin-9-yl)-2-glycyloxymethyl]butyl glycinate tri-hydrochloride (16). Yield 65%; UV (H₂O) λ_{max} 222 (ε 23231), 244 (4341), and 306 (6300) nm; IR (KBr) 3309, 1747, 1659, 1646, 1425 cm⁻¹; ¹H NMR δ 1.89–2.14 (m, 3H, CH₂CH), 3.81 (br s, 4H, 2 αCH₂), 4.11–4.36 (m, 6H, 2 OCH₂ and NCH₂), 8.09 (br s, 3H, 2-NH₃+), 8.65 (br s, 6H, 2 αNH₃+), 8.73 (s, 1H, H-8), 9.00 (s, 1H,

H-6); ¹³C NMR δ 27.6 (NCH₂CH₂), 34.3 (CH), 40.8 (NCH₂), 64.5 (αC), 65.4 (CH₂OCOCH₂), 126.0 (C-5), 139.1 (C-8), 149.2 (C-6), 154.7 (C-4), 156.6 (C-2), 167.4 (CO); FAB-MS m/z 352 (MH⁺). Anal. calcd for C₁₄H₂₁N₇O₄·3 HCl·0.7 H₂O·1.5 CH₃OH: C, 35.70; H, 6.07; N, 18.80. Found: C, 35.81; H, 6.20; N, 18.82.

[4-(2-Aminopurin-9-yl)-2-(L-alanyloxy)methyl]butyl L-alaninate tri-hydrochloride (17). Yield 80%; UV (H₂O) λ_{max} 224 (ε 13504) and 268 (4473) nm; IR (KBr) 3364, 3029, 1743, 1698, 1576, 1458 cm⁻¹; ¹H NMR δ 1.45 (d, J=6.9 Hz, 6H, 2 CH₃), 1.93–2.26 (m, 3H, CH₂CH), 4.11 (br s, 2H, 2 αCH), 4.20–4.35 (m, 6H, 2 OCH₂, and NCH₂), 7.95 (br s, 3H, 2-NH₃⁺), 8.74 (br s, 6H, αNH₃⁺), 8.94 (s, 1H, H-8), 9.13 (s, 1H, H-6); FAB-MS m/z 380 (MH⁺). Anal. calcd for C₁₆H₂₅N₇O₄·3 HCl·H₂O·0.4 CH₃OH: C, 37.91; H, 6.13; N, 18.87. Found: C, 38.01; H, 6.29; N, 18.78.

[4-(2-Aminopurin-9-vl)-2-(L-valyloxy)methyl|butyl valinate tri-hydrochloride (18). Yield 71%; UV (H₂O) λ_{max} 222 (ϵ 23103), 244 (4377), and 306 (6209) nm; IR (KBr) 3309, 1746, 1661, 1649, 1427 cm⁻¹; ¹H NMR δ 0.91–0.97 (m, 12H, 4 CH₃), 1.95–2.15 (m, 3H, CH_2CH), 2.15–2.30 (m, 2H, 2 $CH(CH_3)_2$), 3.79 (br s, 2H, 2 αCH), 4.23 (br s, 6H, 2 OCH₂ and NCH₂), 8.25 (br s, 3H, 2-NH₃⁺), 8.80 (br s, 6H, $\frac{1}{2}$ α NH₃⁺), 8.85 (s, 1H, H-8), 9.04 (s, 1H, H-6); 13 C NMR δ 17.6 (CH(CH₃)₂), 18.6 (CH(CH₃)₂), 27.0 (NCH₂CH₂), 29.2 (CH(CH₃)₂), 34.1 (CH), 40.8 (NCH₂), 57.45 and 57.53 (αC), 64.37 and 64.43 (CH₂OCOCH), 125.9 (C-5), 138.1 (C-8), 149.8 (C-6), 154.2 (C-4), 156.9 (C-2), 168.25 and 168.34 (CO); FAB-MS m/z 436 (MH⁺). Anal. calcd for C₂₀H₃₃N₇O₄·3 HCl·H₂O·0.8 CH₃COCH₃: C, 44.15; H, 7.08; N, 16.09. Found: C,44.27; H, 7.21; N, 16.24.

[4-(2-Aminopurin-9-yl)-2-(L-**leucyloxy**)**methyl|butyl** L-**leucinate tri-hydrochloride (19).** Yield 98%; UV (H₂O) λ_{max} 222 (ε 12565), 246 (3795), and 298 (3828) nm; IR (KBr) 3339, 1747, 1663, 1647, 1428 cm⁻¹; ¹H NMR δ 0.87 (d, J=5.4 Hz, 6H, CH(C H_3)₂), 0.88 (d, J=5.4 Hz, 6H, CH(C H_3)₂), 1.60–1.82 (m, 6H, 2 C H_2 CH(CH₃)₂), 1.95–2.30 (m, 3H, CH₂CH), 3.90 (br s, 2H, 2 αCH), 4.15–4.40 (m, 6H, 2 OCH₂ and NCH₂), 8.10 (br s, 3H, 2-NH₃⁺), 8.50 (br s, 6H, 2 αNH₃⁺), 9.04 (s, 1H, H-8), 9.17 (s, 1H, H-6); FAB-MS m/z 464 (MH⁺). Anal. calcd for C₂₂H₃₇N₇O₄·3 HCl·2 CH₃OH·0.5 CH₃COCH₃: C, 45.98; H, 7.72; N, 14.72. Found: C, 45.77; H, 7.85; N, 14.79.

[4-(2-Aminopurin-9-yl)-2-(L-isoleucyloxy)methyl]butyl L-isoleucinate tri-hydrochloride (20). Yield 67%; UV (H₂O) λ_{max} 222 (ε 23867), 244 (4288), and 306 (6446) nm; IR (KBr) 3307, 1746, 1660, 1648, 1426 cm⁻¹; ¹H NMR δ 0.82–0.90 (m, 12H, 4 CH₃), 1.15–1.50 (m, 4H, 2 CH CH₂CH₃), 1.90–2.15 (m, 5H, CH₂CH and 2 CHCH₃), 3.86 (br s, 2H, 2 αCH), 4.15–4.32 (m, 6H, 2 OCH₂ and NCH₂), 8.20 (br s, 3H, 2-NH₃+), 8.84 (br s, 7H, H-8 and 2 αNH₃+), 9.03 (s, 1H, H-6); ¹³C NMR δ 11.4 (CH₂CH₃), 14.3 (CHCH₃), 25.4 (CH₂CH₃), 27.0 (NCH₂CH₂), 34.1 (CHCH₃), 35.7 (CH), 40.8 (NCH₂), 56.06 and 56.14 (αC), 64.3 and 64.4 (CH₂OCOCH), 125.9 (C-5), 138.3 (C-8), 149.7 (C-6), 154.3 (C-4), 156.8 (C-2),

168.1 and 168.2 (CO); FAB-MS m/z 464 (MH⁺). Anal. calcd for $C_{22}H_{37}N_7O_4$ ·3 HCl·CH₃COCH₃: C, 47.58; H, 7.35; N, 15.54. Found: C, 47.69; H, 7.57; N, 15.36.

Oral bioavailability. The bioavailability of test compound was estimated by determining the total amount of penciclovir in the urine using HPLC. Urine was collected for 48 h in a metabolic cage after oral administration of a single 0.2 mmol kg⁻¹ dose of test compound to six male ICR mice (25-30 g) or four male Sprague-Dawley rats (200–250 g). A 5% solution of sodium azide (0.4 mL per estimated 100 mL of urine) was added to each urine receptacle before collection to prevent bacterial growth. The collected urine was filtered (0.45-µm), and the penciclovir concentration was analyzed by HPLC as follows. A C₁₈ symmetry column equipped with a compatible guard column was eluted at a flow rate of 1 mL min⁻¹ with the following three-step gradient; (step 1) a 10-min isocratic elution with 100% buffer A (0.1% phosphoric acid), (step 2) a 25-min linear gradient from 100% buffer A to 55% buffer A and 45% buffer B (80% MeCN in 0.1% phosphoric acid), (step 3) a 4-min isocratic elution with 55% buffer A and 45% buffer B. The column was equilibrated with 100% buffer A for 10 min before each sample injection. The UV absorbance of the column effluent was monitored at 248 nm.

References

- 1. Harnden, M. R.; Jarvest, R. L.; Bacon, T. H.; Boyd, M. R. *J. Med. Chem.* **1987**, *30*, 1636–1642.
- 2. Boyd, M. R.; Bacon, T. H.; Sutton, D.; Cole, M. Anti-microb. Agents Chemother. 1987, 31, 1238–1242.
- 3. Boyd, M. R.; Safrin, S.; Kern, E. R. Antiviral Chem. Chemother. 1993, 4 (Suppl. 1), 3–11.
- 4. Bacon, T. H.; Schinazi, R. F. *Antiviral Chem. Chemother*. **1993**, *4* (Suppl. 1), 25–36.
- 5. de Miranda, P.; Krasny, H. C.; Page, D. A.; Elion, G. B. *J. Pharmacol. Exp. Ther.* **1981**, *219*, 309–315.
- 6. Jacobson, M. A.; de Miranda, P.; Cederberg, D. M.; Burnette, T.; Cobb, E.; Brodie, H. R.; Mills, J. *Antimicrob. Agents Chemother.* **1987**, *31*, 1251–1254.
- 7. Larsson, A.; Stenberg, K.; Ericson, A.-C.; Haglund, U.; Yisak, W.-A.; Johansson, N. G.; Öberg, B.; Datema, R. *Antimicrob. Agents Chemother.* **1986**, *30*, 598–605.
- 8. Harnden, M. R.; Jarvest, R. L.; Boyd, M. R.; Sutton, D.; Vere Hodge, R. A. J. Med. Chem. 1989, 32, 1738–1743.
- 9. Vere Hodge, R. A.; Sutton, D.; Boyd, M. R.; Harnden, M. R.; Jarvest, R. L. *Antimicrob. Agents Chemother.* **1989**, *33*, 1765–1773.
- 10. Pue, M. A.; Benet, L. Z. Antiviral Chem. Chemother. **1993**, 4 (Suppl. 1), 47–55.
- 11. Beauchamp, L. M.; Orr, G. F.; de Miranda, P.; Burnette, T.; Krenitsky, T. A. *Antiviral Chem. Chemother.* **1992**, *3*, 157–164.
- 12. Soul-Lawton, J.; Seaber, E.; On, N.; Wootton, R.; Rolan, P.; Posner, J. Antimicrob. Agents Chemother. 1995, 39, 2759–2764.
- 13. Kim, D.-K.; Lee, N.; Im, G.-J.; Kim, Y.-W.; Chang, K.; Kim, H.-T.; Cho, Y.-B.; Choi, W.-S.; Jung, I.; Kim, K. H. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1849–1854.
- 14. Kim, D.-K.; Lee, N.; Kim, Y.-W.; Chang, K.; Kim, J.-S.; Im, G.-J.; Choi, W.-S.; Jung, I.; Kim, T.-S.; Hwang, Y.-Y.; Min, D.-S.; Um, K. A.; Cho, Y.-B.; Kim, K. H. *J. Med. Chem.* **1998**, *41*, 3435–3441.